Publications

Peer Reviewed:

  1. Abbott MR, Nahum-Shani I, Lam CY, Potter LN, Wetter DW, Dempsey WH. A latent variable approach to jointly modeling longitudinal and cumulative event data using a weighted two-stage method. Statistics in Medicine. 2024; 1-15. Paper. Code.
  2. Das R$^*$, Abbott MR$^*$, Schipper MJ, Sahai V, Bednar F, Hadley S, Evans JR, Lawrence TS, Cuneo KC. Predictors of acute and late toxicity in patients receiving chemoradiation for unresectable pancreatic cancer. Advances in Radiation Oncology. 2023; 8(6). Paper.
  3. Abbott MR, Beesley LJ, Bellile EL, Shuman AG, Rozek LS, Taylor JMG. Comparing individualized survival predictions from random survival forests and multistate models in the presence of missing data: a case study of patients with oropharyngeal cancer. Cancer Informatics. 2023; 22. Paper.
  4. Tosoian JJ, Feldman AS, Abbott MR, Mehra R, Tiemeny P, Stuart Wolf Jr J, Stone S, Wu S, Daignault-Newton S, Taylor JMG, Wu C-L, Morgan TM. Biopsy cell cycle proliferation score predicts adverse surgical pathology in localized renal cell carcinoma. European Urology. 2020; 78(5): 657-660. Paper.
  5. Hartman HE, Sun Y, Devasia TP, Chase EC, Jairath NK, Dess RT, Jackson WC, Morris E, Li P, Hochstedler KA, Abbott MR, Kidwell KM, Walter V, Wang M, Wang X, Zaorsky NG, Schipper MJ, Spratt DE. Integrated survival estimates for cancer treatment delay among adults with cancer during the COVID-19 pandemic. JAMA Oncology. 2020; 6(12): 1881-1889. Paper.
  6. Cobian A, Abbott M, Sood A, Sverchkov Y, Hanrahan L, Guilbert T, Craven M. Modeling asthma exacerbations from electronic health records. AMIA Joint Summits on Translational Science Proceedings. 2020; 98-107. Paper.
  7. Volkening A, Abbott MR, Catey D, Chandra N, Dubois B, Lim F, Sandstede B. Modeling stripe formation on growing zebrafish tailfins. Bulletin of Mathematical Biology. 2020; 82(5). Paper.

$^*$denotes equal contributions as co-first authors

Preprints:

  1. Abbott MR, Dempsey WH, Nahum-Shani I, Lam CY, Wetter DW, Taylor JMG. A Bayesian joint longitudinal-survival model with a latent stochastic process for intensive longitudinal data. arXiv preprint. 2024. arXiv:2405.00179 [stat.ME]. Paper. Code.
  2. Abbott MR, Dempsey WH, Nahum-Shani I, Lam CY, Wetter DW, Taylor JMG. A continuous-time dynamic factor model for intensive longitudinal data arising from mobile health studies. arXiv preprint. 2023. arXiv:2307.15681 [stat.ME]. Paper. Code.